S-Lab Laboratory Assessment Framework

Version 1.3 September 2011 ©S-Lab

Developed by the S-Lab (Safe, Successful and Sustainable Laboratories) initiative of HEEPI (Higher Education for Environmental Performance Improvement) See <u>www.goodcampus.org</u>

Inspired by the pioneering work of the LabRATS (Laboratory Research and Technical Staff) programme at the University of California, Santa Barbara See <u>http://sustainability.ucsb.edu/LARS</u>

Lab-CURE:

Chemicals, Utilities, Resources and Environment in Laboratories

Contents

Condition of Use3
Disclaimer3
Acknowledgements
Introduction4
How to Conduct a Laboratory Assessment5
Table 1: Key Laboratory Issues and Principles for Environmental Improvement
Scoring7
Recommendations and Subsequent Actions9
Updating and Version Control9
Figure 1: S-Lab Resources and the S-Lab Assessment Process10
Lab Assessment Tables to Complete11
Required Information11
Optional Information (Helpful in Briefing Assessors and Assisting S-Lab Analysis of Results)11
Issue 1: Chemicals and Materials (CM)12
Issue 2: Cold Storage, i.e. fridges, freezers, nitrogen devices (CS)
Issue 3: Fume Cupboards and Containment (FC)16
Issue 4: Heating, Ventilation and Air Conditioning (HVAC)18
Issue 5: Lighting (L)19
Issue 6: Management and Training (MT)21
Issue 7: Scientific Equipment (including personal computing and printing) (SE)23
Issue 8: Waste and Recycling (WR)24
Issue 9: Water (W)25
Issue 10: Innovation and Dissemination (IND)26
Total Points27

Condition of Use

Organisations can freely use this document and its contents without charge, but results of the assessments must be reported back to S-Lab via Green Impact (see below) or info@heepi.org.uk so that the frameworks can be improved, and the knowledge base is developed. All information will be treated as confidential, and no individual laboratory scores will be made public.

Disclaimer

The information and guidance in this document is based on actual experience in UK and North American universities. Every effort has been made to ensure accuracy, but readers should verify all information as we cannot provide professional advice. Every laboratory is different and so it is unlikely that every sign of compliance will be applicable in all cases.

Acknowledgements

S-Lab would like to thank the following who have provided feedback and advice on this framework: Sandra Bond, University College London; Charlotte Bonner, NUSSL; Jo Kemp, NUSSL; Alaine Martin, University of Strathclyde; Andrew Morris, Arthur Nicholas and Faculty of Life Sciences colleagues, University of Manchester; and Martin Wiles, University of Bristol.

Introduction

Laboratory operation has many significant environmental impacts ranging from energy and resource consumption to chemical and equipment use and disposal. Experience shows that many of these impacts could be reduced or avoided in cost-effective ways without compromising research, safety or teaching - indeed, they can often be enhanced. See the S-Lab section of <u>www.goodcampus.org</u> for many examples of this.

S-Lab has produced three related documents to support analysis of environmental impacts in laboratories, and to identify and implement improvement opportunities:

- Individual laboratory assessment framework for individual laboratories/areas within a broader building or organisational unit (i.e. this document).
- Organisation and building assessment framework addressing issues which are common to many individual laboratories/rooms within a building, school or department and which therefore needs to be done only once; and
- A best practice guide (in preparation) which provides a summary of resources and examples of best practice relating to each criteria.

There are many S-Lab resources (summarised in Figure 1) which can help with assessment, by:

- Providing Background there is a wealth of resources on key lab sustainability issues such as publications, presentations from past events, and briefing papers on the S-Lab website.
- Benchmarking S-Lab have conducted several rounds of energy benchmarking of laboratory buildings¹, and a report also provides information on typical energy consumption of lab equipment.²
- Highlighting Best Practice through a growing number of S-Lab case studies, briefing papers and technical reports which will be summarised in the accompanying Best Practice Guide.
- Understanding Regulations through the S-Lab guide to key energy and carbon regulations affecting laboratories.³

¹ Hopkinson L., James P., Lenegan N., McGrath T. and Tait M., 2011. Energy Consumption of University Laboratories: Detailed Results from S-Lab Audits. July 2011. Available at www.goodcampus.org

² Hopkinson L., and James P., 2011. Saving Money Through Sustainable Procurement of Laboratory Equipment. March 2011. Available at: www.goodcampus.org

³ James P. and Hopkinson L., 2011. Carbon, Energy and Environmental Issues Affecting Laboratories in Higher

Education - A Supplement to the HEEPI Report on General Regulations and Schemes on the Topic. July 2011. Available at www.goodcampus.org

How to Conduct a Laboratory Assessment

The assessment frameworks can be used by anyone – subject to the conditions of use that results are returned to S-Lab – but in the UK there is the option of undertaking this as part of the NUS Green Impact Scheme. This is an environmental accreditation scheme with an awards element originally designed for university departments but now being applied more broadly.⁴ S-Lab recommends use of this scheme for eligible organisations if they wish to have more proactive support for the implementation of the S-Lab assessment criteria and to gain independent accreditation and recognition of their assessments.

Whether assessments are done independently, or through the Green Impact programme, they will be most effective if they involve several people to provide different perspectives. For the Organisation and Building framework, this requires a multi-functional team, ideally involving laboratory managers and technicians, academics and Estates and Procurement staff (especially when they have specialist roles related to labs), reporting into a head of department/school or other senior manager. The single laboratory/area assessment can be done exclusively by an individual such a as a technician or a graduate student (as an intern, as is the case with LabRATS, or as a course-related project) but it provides an opportunity to develop awareness and networks to support improvement, for example, by involving another technician.

The actual single laboratory/area assessment involves completing 12 tables addressing:

- Background information
- Ten key laboratory environmental issues which when relevant to the laboratory or area being addressed need to be addressed for effective environmental management. There are key principles associated with each issue (also summarised in Table 1). These tables contain the following information
 - 'Why are we asking? which explains the rationale behind each individual criteria and provides further information on the issue;
 - o 'Criteria' the individual criteria themselves; and
 - Evaluation the actions or evidence that indicates whether the lab meets a particular criteria.

If someone external to the laboratory, or parts of the area, being addressed is doing the assessment the recommended approach is to go through the criteria/evaluation on a laboratory walk around, accompanied by the lab 'owner', at a time of 'normal' conditions, and when some users will be available to answer the questions that are being asked.

⁴ For more information see <u>www.nus.org.uk/greenimpact</u>.

Table 1: Key Laboratory Issues and Principles for Environmental Improvement

Ке	y Laboratory	Key principles	No. of
Issues			criteria
1.	Chemicals and	1: Chemicals and materials are stored safely and used efficiently.	6
	Materials	2: Chemicals and materials that are hazardous to humans or the	
		environment are substituted wherever possible.	
2.	Cold Storage	1: Cold storage requirements are minimised through effective	6
		sample management and other means.	
		2: Cold storage devices are energy efficient and used	
		appropriately.	
3.	Fume	1: Fume cupboards and other containment devices are working	6
	Cupboards and	safely and efficiently when in use.	
	Containment	2: Fume cupboards and other containment devices are in low or	
		zero energy states when not in use.	
4.	Heating,	1: Laboratory conditions are comfortable for users.	3
	Ventilation and	2: Air flows are minimised and appropriate to needs (where	
	Air	compatible with risk assessment based safety requirements).	
	Conditioning		
5.	Lighting	1: There is maximum use of natural lighting	5
		2: Lighting is appropriate to user requirements and is always	
		turned off or down when not required.	
		3: High efficiency light fixtures are used.	
6.	Management	1: There is senior management support and clear responsibilities	5
	and Training	for lab environmental improvement.	
		2: There are cross-laboratory support activities for environmental	
		improvement.	
		3. The importance of energy and environmental issues is	
		conveyed to laboratory users	
7.	Scientific	1: Equipment is used efficiently, with high loadings and utilisation	5
	Equipment	levels and turning off or powering down when not in use.	
	(including	2: Energy, water and waste costs are calculated for, and a	
	computing and	significant factor in making, equipment procurement decisions.	
	printing)		
8.	Waste and	1: There are effective mechanisms to achieve reuse & recycling of	4
	Recycling	materials and equipment wherever possible and safe.	
		2: Hazardous and special waste is minimised	
9.	Water	1: Water is used efficiently and recirculated wherever possible.	4
		2: Purified water is used appropriately and sparingly.	
10	. Innovation and	1. Innovative actions for environmental improvement are	4
	Dissemination	considered and implemented.	
		2. Information about successful actions is disseminated to the	
		broader laboratory community.	

The exercise can be done at two levels. A 'broad brush' version would involve only modest follow up to deal with any remaining queries and to review and finalise a simple summary of answers and recommendations. The existence of supporting information for the evaluation criteria would be assumed on the basis of verbal assurances rather than physically checked. A more thorough version would involve checking of evidence, more probing of some key issues and more systematic consideration of improvement actions. It is the latter that would be required if taking part in the Green Impact programme. In some cases, measurement, e.g. of lighting, power consumption and/or temperature, may also be appropriate, either during the initial assessment or, more likely, as a follow up activity.

It is very important to address health and safety issues – and to do a risk assessment if necessary – before the exercise begins. As part of this, the assessor(s) should check what experiments are running, which equipment should not be touched, and whether there are any particular hazards.

Once the exercise is complete, implementation of the recommended improvement actions is obviously required. A prerequisite is the assignment of responsibility, either to individuals or project teams.

Scoring

The scoring is currently being developed, and will be guided by user feedback. If the objective is simple comparison between laboratories then a simple percentage of points obtained compared to the total available could be adequate.

Three options are available for this:

- A. Unweighted points pass/fail (i.e. 1 point per each criteria)
- B. Unweighted points pass/fail/working towards (i.e. 1 point for fully meeting each criteria, 0.5 points for partially meeting).
- C. Weighted points (i.e. more than 1 point for fully meeting some key criteria).

If there is a further objective of providing recognition then a Gold, Silver and Bronze classification is recommended. Again, there are three options for this:

- 1. Percentages basing the ranking on the percentage point score (with the Gold level either being set as an absolute number, or at the level reached by the best performing laboratory).
- 2. Classifying criteria as Bronze, Silver, and Gold ones, based primarily on their ease of achievement. This is the case with the current Green Impact model (which also has a fourth category of Working Towards to give some recognition to teams that don't complete enough criteria to gain a Bronze). However, it is possible that the lab component of Green Impact 2011-12 will adopt option 1 or 3.

- HE EPI ENVIRONMENTAL PERFORMANCE
- 3. Hybrid classifying some easily achieved criteria as Bronze to give a clear target, but assigning Silver and Gold on a percentage basis. This is likely to be the approach at the University of Bristol.

The Green Impact approach for laboratories will be finalised by Autumn 2011. However it has been decided that the Bronze criteria will be:

- CM5: All chemicals are stored in approved and secure locations.
- CS2: All stored materials are associated with active uses, or are being kept because of specific archiving requirements.
- FC3: There are effective mechanisms to encourage energy efficient use of fume cupboards.
- FC5: The lab complies with COSSH regulation 9 which requires 14 monthly examinations to ensure fume cupboards are "maintained in an efficient state, in efficient working order, in good repair and in a clean condition".
- HVAC1:The HVAC system is working to specification. If there is evidence that it is not, then laboratory users have made Estates aware of it. (Possible signs of not working to specification are frequent alarms on fume cupboard use; known problems with ventilation equipment; unpleasant working conditions for many users because of draughts and excessive cold or heat; fume cupboards not functioning properly and difficulty opening/closing doors because of pressure differentials).
- L4: Room/corridor lighting is always turned off or down when not required, and when compatible with safety. If this is not the case, and requires Estates action, lab users have them aware of the opportunities.
- MT4: All laboratory users are made aware of the energy and environmental impacts of their activities and the actions they can take to mitigate them.
- SE1: Equipment that can be is generally turned off or powered down when not in use, together with related devices (e.g. AC/DC converters).
- WR1: There are convenient recycling facilities for materials, packaging, and equipment within or nearby the lab and these are used in practice.
- W1: In laboratories with considerable water use, there is awareness of related cost and environmental issues amongst laboratory users and policies on appropriate practices.

Please note the complexity and wide variety of laboratories means that it is difficult to have completely prescriptive criteria. S-Lab has tried to keep the individual criteria as simple and outcome-focussed as possible, however in some cases a certain amount of judgement will be required as to whether individual criteria have been met. There will need to be a point of contact within the organisation (the Green Impact lead for those involved in that scheme) to help with any difficulties.

Recommendations and Subsequent Actions

The key aim of assessment is to drive improvement in environmental performance, so it is important that opportunities for this are identified and recorded as part of the exercise. The implementation of any recommendations will generally require a risk assessment, which may need to include application of British Standard BS EN14175 for any fume cupboard actions.

Updating and Version Control

Laboratory environmental assessment and improvement is in its early stages, and lots of new experience and information is being developed. Hence, this document and its companion ones will be revised periodically. Always check <u>www.goodcampus.org</u> for the latest version before starting an assessment exercise. Any suggestions for improvement e.g. more clarity, further evaluation criteria, should be sent to <u>info@heepi.org.uk</u>

Please note these tables will also be provided in Excel format for ease of completion. Within Green Impact the tables will form part of each participant organisation's online workbook.

Lab Assessment Tables to Complete

Required Information

	Notes
Laboratory Name	
Organisational 'Home' (e.g. Department, Faculty)	
Generic Laboratory Type (e.g. Chemistry,	
Engineering, Life Science; Research or Teaching)	
Date of Assessment	
Name(s) of Assessors	

Optional Information (Helpful in Briefing Assessors and Assisting S-Lab Analysis of Results)

	Notes
Laboratory Size	
Laboratory Use (e.g. numbers; occupancy hours)	
Special Features (e.g. temperature, humidity,	
vibration requirements; especially hazardous	
chemicals; need to comply with DEFRA, Home	
Office or other guidelines))	

Issue 1: Chemicals and Materials (CM)

Principle 1: Chemicals and materials are stored safely and used efficiently.

Principle 2: Chemicals and materials that are hazardous to humans or the environment are substituted wherever possible.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
Chemicals and materials usage can often be significantly reduced, with financial and health and safety as well as environmental benefits. The latter include avoided impacts from chemicals and materials production, and reduced volumes of waste. The starting point for almost all measures to achieve these is knowing exactly what is in the laboratory. Labelling is a prerequisite for this, and of course is also important for health and safety reasons	CM1. All chemical containers are labelled with details of contents, approximate quantity, ownership, and (where relevant) hazard and emergency details, in a manner which can be understood by others if the 'owners' are not available.	Personal observation – no unlabeled containers, no labels that are impossible to decipher etc. NB Chemicals may be contained in a central Chemical Store, in which case the assessment can be done once for all labs.
This is another important prerequisite for improvement actions, as well as being important for health and safety reasons.	CM2. The contents, approximate quantity held and location of all chemical containers are tracked.	Evidence of concrete measures to achieve this, e.g. database.
Many laboratories have large quantities of surplus chemicals, which often end up being disposed of as waste, at considerable cost. Often too one lab wil be ordering chemicals which are actually surplus to requirements in another. Internal exchanges can not only minimise this, but also save money on procurement and improve performance because researchers don't have to wait for chemicals to be delivered. Ordering in smaller sizes can also be beneficial by reducing health and safety risks and tying up less money in stocks.	CM3. The laboratory avoids accumulation of unwanted chemical stocks, e.g. by making surplus chemicals available to other laboratories, by ordering in appropriate sizes, by clearing out when researchers leave.	Evidence of concrete measures to achieve this, e.g. regular email requests/offers, participation in department-wide chemical management system, ordering in small sizes . Interview with lab user(s). NB Criteria not met if any chemicals or materials were sent to waste for reasons that were avoidable (e.g. not using before end of useful life) in the previous 12 months. NB Chemicals may be contained in a central Chemical Store, in which case the assessment can be done once for all labs.
Efficient use is not only important for the	CM4. Chemicals and materials are used	Interview with lab user(s).

environmental and financial performance of the	efficiently within laboratory	Evidence of action, e.g. laboratory handbook
laboratory, measures to achieve it can also send	demonstrations, experiments and other	or awareness materials promoting efficient
important messages to students and new	activities so that waste is minimised.	procedures, making up stock solutions for
researchers.		use by multiple users.
It's obviously important to avoid the potential risk of	CM5. All chemicals are stored in approved	Evidence of a storage policy based on health
spillage or emissions of chemicals to the atmosphere.	and secure locations.	and safety assessment(s).
		No problems with solvent evaporation in
		summer.
		Interview with lab user(s).
		NB This point can't be awarded if chemicals
		are stored in fume cupboards or containment
		devices for prolonged periods (see criteria
		FC6)
Substitution of chemicals by less hazardous	CM6. There has been a systematic attempt	Knowledge of which chemicals are especially
alternatives can reduce health and safety risks,	to find alternatives to especially	environmentally damaging or hazardous.
environmental impacts and costs (e.g. through	environmentally damaging or hazardous	Evidence of activity, e.g. changes in chemicals
avoided special waste costs). Some environmentally	chemicals.	or procedures used.
damaging or hazardous chemicals in common use are		Evidence of systematic review of experiments
also capable of misuse by terrorists.		for undergraduates and substitution of
		hazardous chemicals where appropriate

Issue 2: Cold Storage, i.e. fridges, freezers, nitrogen devices (CS)

Principle 1: Cold storage requirements are minimised through effective sample management and other means.

Principle 2: Cold storage devices are energy efficient and used appropriately.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
Cold storage devices are highly energy intensive –	CS1. All stored materials are permanently	Personal observation.
they can account for up to 5% of total laboratory	labelled with details of contents, expiry and	
energy consumption, and also create indirect		

consumption because their heat generation often requires additional cooling from ventilation air. They also take up floor space that could be used for other purposes. S-Lab research suggests that some of these impacts are unnecessary because unwanted or obsolete samples are being stored. Labelling is a prerequisite for avoiding this, and of course is also important for health and safety and regulatory compliance reasons	ownership, in a manner which can be understood by others if the 'owners' are not available.	
Ditto.	CS2. All stored materials are associated with	Evidence of a system (hand-written or digital)
	active uses, or are being kept because of	which tracks the location of stored materials.
	specific archiving requirements.	Evidence of a regular 'clear outs' of
		samples/materials which have no clear
		ownership or value.
Many biological samples are being stored at higher	CS3. Stored samples and materials are	Evidence of written policies/guidance on
temperatures than necessary (e.g. ultracold freezers	stored at the highest feasible temperature	storage temperatures.
are often set to maximum settings such as -80C when	for effective preservation.	Interview with lab user(s).
-70 would be sufficient). Ambient temperature DNA		NB Check if ultracold devices are set to
		lowest possible temperature and, if so,
		whether there is a clear rationale for this.
Many cold storage devices store fewer samples than	CS4. All available space is utilised through	Evidence of use of modular or other devices
they are capable of because of awkwardly shaped	use of appropriate racking, storage	to maximise space utilisation.
containers, poor racking etc. This is not only	containers etc.	Personal observation.
inefficient but also threatens sample longevity		
doors or lids are opened.		
The energy consumption of cold storage devices rises	CS5. There is regular (at least annual)	Interview with lab user(s).
if circuits or interiors are frosted, or if they are not	cleaning, defrosting and (for ultracold	Evidence of maintenance contracts for
working effectively.	freezers) maintenance of devices. This	ultracold devices.
	· · ·	

	includes cleaning heat exchange coils on fridges and freezers, and defrosting of any devices without auto-defrost.	
When the lifetime energy costs are taken into account, it can be very cost effective to purchase more expensive energy efficient cold storage devices. Vendors should be able to provide consumption information although it is important to check that the operating conditions this is gathered under are the same as your laboratory. Estates staff may be able to provide support for the incremental cost differences between ordinary and efficient devices.	CS6. Energy costs of new cold storage devices are quantified and incorporated into a whole life costing approach to new purchases.	Interview with lab user(s) and, possibly, procurement staff. Evidence that energy costs were considered in any purchases over the last 12 months, either directly or indirectly by purchasing from a scheme which has done this. NB If no recent purchases, treat as non applicable.

Issue 3: Fume Cupboards and Containment (FC)

Principle 1: Fume cupboards and other containment devices are working safely and efficiently when in use.

Principle 2: Fume cupboards and other containment devices are in low or zero energy states when not in use.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
A fume cupboard running continuously with its sash	FC1. Fume cupboard sashes are generally	Visual inspection: are all sashes down in
fully open can use up to £2000 of electricity and gas a	down when no one is working in them,	cupboards not being used?
year. In the case of variable air volume (VAV) fume	especially at night or over weekends.	Evidence of automatic sash closure.
cupboards sash closure can reduce energy		Interview with lab user(s).
consumption by 50% or more. This can be done		
through automatic sash closure but the cheapest		
option will be through behaviour change amongst		
users. Sash closure in constant air volume (CAV) fume		
cupboards will not impact on energy use. However, it		
is important because a) it increases safety by		
protecting against explosion or outbreaks of fumes as		
a result of sudden air disturbance, and b) current		
users may use VAV fume cupboards at some point in		
the future so that establishing good habits is		
worthwhile.		
In many labs fume cupboards are operated 24/7 even	FC2. Fume cupboards are switched off	Interview with lab user(s).
when there are no experiments running. S-Lab	when not in use for extended periods,	Evidence of capability, e.g. switches.
materials demonstrate that actions can be taken to	where it is possible and when safe to do so	Check with Estates.
achieve this, such as switching all or many cupboards	(e.g. no effect on pressure requirements).	
off overnight, weekends or during vacations (with a		
small number of cupboards being designated for 24/7		
operation if necessary).		

General awareness campaigns can achieve a	FC3. There are effective mechanisms to	Evidence of mechanisms, e.g. awareness
considerable amount with regard to sash closure and	encourage energy efficient use of fume	materials such as stickers on cupboards,
other fume cupboard efficiency measures but	cupboards.	posters in room; training sessions for staff
experience suggests that these work best when		and students; incentive schemes; designation
supported by enforcement measures. It also		of an individual or individuals as responsible
demonstrates that modest incentives can help create		staff for ensuring efficient use.
positive competition between labs and research		
groups for good performance.		
Fans have to work harder when vents are partially	FC4. There are no unnecessary obstacles to	Visual inspection.
blocked. This increases energy consumption and can	internal air flows within any of the fume	
also compromise safe operation of the fume	cupboards in the lab, e.g. blocking of air	
cupboard.	vents with containers or equipment.	
Maintaining fume cupboards properly ensures safe	FC5. The lab complies with COSSH	Evidence of fume cupboard testing
operation and optimum energy consumption.	regulation 9 which requires 14 monthly	certificates. (NB May be held by Estates).
Inspection reports also enable actual face velocities	examinations to ensure fume cupboards are	
(in metres per second) to be compared with design	"maintained in an efficient state, in efficient	
ones, and often reveal that the laboratory is not	working order, in good repair and in a clean	
working to specification.	condition".	
Fume cupboards which cost up to £2000 a year to run	FC6. Fume cupboards are not used as	Visual inspection confirming that ventilated
are a very costly and energy inefficient method of	storage cupboards for prolonged periods	storage cabinets are provided where
	and conduct of an experiment).	Interview with lab user(s).

Issue 4: Heating, Ventilation and Air Conditioning (HVAC)

Principle 1: Laboratory conditions are comfortable for users.

Principle 2: Air flows are minimised and appropriate to needs (where compatible with risk assessment based safety requirements).

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
S-Lab has shown that moving and conditioning air through ventilation systems generally accounts for 40-60% of laboratory energy use. The systems are so complex, and the lab requirements they must meet are so diverse and ever changing, that they often don't work properly. This will usually be difficult to resolve, and remedial work will need to be led by Estates. However, the issue is so important that lab users need to be aware of it so that they can press for change, and be able to provide relevant information if and when action is taken.	HVAC1. The HVAC system is working to specification. If there is evidence that it is not, then laboratory users have made Estates aware of it. (Possible signs of not working to specification are frequent alarms on fume cupboard use; known problems with ventilation equipment; unpleasant working conditions for many users because of draughts and excessive cold or heat; fume cupboards not functioning properly and difficulty opening/closing doors because of pressure differentials).	Interview with lab user(s). Check with Estates. NB This criteria is present in both frameworks. It is obviously difficult for individual laboratories and their users to take action by themselves so the criteria is met if there is clear evidence that laboratory users have raised concerns with Estates, or are participating in a dialogue with them about improvement.
Ventilation is often over-specified for current needs, especially given changes in lab use. Concentrating activities which need high levels of ventilation or other special requirements (e.g. cooling of rooms with freezers in) into the smallest possible space can enable the freed up space to be ventilated at lower levels, or not at all.	HVAC2. There are no examples of large spaces being permanently ventilated or conditioned to a high specification in order to meet the needs of a small number of activities/devices, or occasional circumstances. If there are examples, then laboratory users have made Estates aware of it.	Interview with lab user(s). Personal observation (strong air flows through vents with no obvious reason when checked with users, noticeable cool air temperatures). NB This criteria is present in both frameworks, but in this one the emphasis is on areas or activties which can be influenced at the level of individual laboratories, e.g. by

		initiating discussions with Estates about
		changes in use.
Noise can be an indicator of inefficient operation, and	HVAC3. Equipment/plant noise does not	Interview with lab user(s).
is obviously disturbing to lab users, with effects on	cause significant annoyance or discomfort	Personal observation.
performance. Plant noise should be reported to	to users over prolonged periods. If the noise	NB Users often become habituated to
Estates, whilst equipment noise can often be solved	relates to plant. Estates have been made	surprisingly high levels of noise so if personal
by moving to separate areas or as part of servicing if	awara of it	observation suggests that it is unusually high
it is logged with the appropriate contact.	aware of it.	or annoying, check with more than user if
		possible.

Issue 5: Lighting (L)

Principle 1: There is maximum use of natural lighting

Principle 2: Lighting is appropriate to user requirements and is always turned off or down when not required.

Principle 3: High efficiency light fixtures are used.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation	
provides further information and examples)			
Natural light has proven benefits for health and productivity compared to artificial light, and of course uses no additional energy. However, some labs have blinds drawn and artificial lighting on for much of the year. Whilst glare is a significant issue, there are other ways of dealing with this than completely blocking daylight.	L1. There is maximum use of natural lighting.	Visual inspection: blinds are raised or curtains are open in rooms with windows and lighting can be adjusted so that it is not on in all areas of the room during bright periods. Interview with lab user(s).	
Lighting can consume up to 15% of laboratory electricity. Lights are often left on (sometimes all night) when areas are not being used whilst original lighting specifications. Replacing fixtures with high efficiency ones can reduce energy consumption significantly.	L2. All luminaires are high efficiency ones, e.g. compact fluorescent lamps for task lighting, LED or T5 fluorescent lights (rather than T8 or T12s) for overhead lighting.	Confirmation by Estates for fixed lighting fixtures. Visual inspection.	

LED lighting for scientific tasksis not only more energy efficient, but in many cases may be better for the science because it can be more easily tuned to specific wavelengths.	L3. The lab has examined replacement of mercury with LED low energy lighting for scientific tasks and is doing this whenever possible, e.g. in growth chambers, microscopy and plant growth rooms.	Visual inspection. Interview with lab user(s). NB LED room/corridor lighting covered by previous criteria.
Leaving lights on unnecessarily wastes considerable amounts of energy.	L4. Room/corridor lighting is always turned off or down when not required, and when compatible with safety. If this is not the case, and requires Estates action, lab users have them aware of the opportunities.	Visual inspection – lights are off when room is empty for extended period or at end of day. Evidence of action, e.g. stickers on light controls, assigned responsibility for lighting switch off.
Lighting design specifications for labs are sometimes too high for subsequent uses. The US LabRATS programme has removed many luminaires where they are not necessary. Task lighting of a small area can also be more beneficial to users, and energy efficient, than general lighting of a much larger space.	L5. Illumination is appropriate to tasks. If this is not the case, and requires Estates action, lab users have them aware of the opportunities.	Interview with lab user(s). Visual inspection, especially in corridors and little used spaces.

Issue 6: Management and Training (MT)

Principle 1: There is senior management support and clear responsibilities for laboratory environmental improvement.

Principle 2: There are cross-laboratory support activities for environmental improvement.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
Many actions to improve laboratory environmental performance require approval or active support by academics, and some may also have short-term costs (recompensed by medium-long term benefits). Senior management backing is obviously important in both cases. S-Lab cases and other materials can provide useful evidence to persuade senior managers of the benefits and feasibility of taking action.	MT1. There is senior management support (e.g. Head of Department) for the lab assessment and a willingness to implement any recommendations which result from it.	Evidence of support, e.g. email, interview.
Often, things are not done because no-one takes responsibility for them. Assigning responsibilities – and ensuring that those given them can make a difference in practice – can be a powerful catalyst of improvement.	MT2. The laboratory has, or is connected to, a responsibility structure for key aspects of environmental performance, e.g. sash closure.	Evidence of structure, e.g. a 'green champion' within the lab or with responsibility for it, internal responsibilities such as monitoring recycling and sash closure.
It can be empowering to Laboratory technical staff to share experiences with peers on environmental (or sometimes other) issues , or to be aware of environmental initiatives in other labs	MT3. The laboratory participates in broader networks (within the institution or beyond it) which provide opportunities to discuss and take action on environmental issues.	Evidence of mechanisms and lab involvement (e.g. a regular technicians meeting with environmental issues on the agenda; a special lab environmental group; a general environmental champions meeting; attendance at S-Lab and other external events with an environmental focus; involvement in Green Impact training). Interview with lab user(s).
The actions of individual lab users can often make a significant contribution to environmental	MT4. All laboratory users are made aware	Interview with lab user(s).

improvement (e.g. switching off equipment, closing	of the energy and environmental impacts	Evidence of induction and/or training activities
fume cupboard sashes, separating waste etc).	of their activities and the actions they can	on environmental issues.
	take to mitigate them.	Evidence of awareness materials, e.g. posters.
Everyone in labs is usually short of time and has many	MT5. There is a formal improvement	Evidence of process, e.g. participation in an
priorities so it's easy for insights and ideas about	process in, or connected to, the laboratory	environmental management system such as
environmental improvement to get lost, or be dealt	which has had demonstrable impacts on	Ecocampus; participation in a lab improvement
With In <i>dd noc</i> way, and have no follow through.	issues covered in this assessment, or other	team; implementation of relevant actions
process can be beloful in overcoming this	issues which are clearly related to	arising from health and safety audits.
	environmental performance.	

Issue 7: Scientific Equipment (including personal computing and printing) (SE)

Principle 1: Equipment is used efficiently, with high loadings and utilisation levels and turning off or powering down when not in use. **Principle 2**: Energy, water and waste costs are calculated for, and a significant factor in making, equipment procurement decisions.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides further information and examples)		
Scientific equipment can be a significant proportion of laboratory electricity consumption – up to 30-40% or higher in some labs. Some of this equipment is left on 24/7 even when not used or needed, which wastes significant amounts of energy.	SE1. Equipment that can be is generally turned off or powered down when not in use, together with related devices (e.g. AC/DC converters).	Visual inspection – equipment (including IT) is not running unnecessarily, plugs/off switches are easily accessible, signs of awareness raising e.g. stickers/posters. Energy saving devices are being used where appropriate, e.g. automatic timers, 'slave' sockets, which switch off all connected peripherals when main equipment is used. Interview with lab user(s).
Energy, water and waste costs can make a significant contribution to the whole life costs of equipment – in some cases more than the initial purchase costs. If these costs are taken into account at procurement stage, it may be more cost effective to purchase more resource efficient but higher first cost equipment at the outset.	SE2. Energy, water and waste issues and costs (including any secondary costs such as increased room cooling) are explicitly considered when purchasing lab equipment.	Interview with lab user(s) and, possibly, procurement staff. Evidence that energy, water and waste costs were considered in any relevant purchases over the last 12 months, either directly or indirectly by purchasing from a scheme which has done this. NB If no recent purchases, treat as non applicable.
There are many examples of equipment duplication between different research groups within the same building, or in other parts of the university. Sharing equipment can save costs, space and reduce waste from ultimate disposal of the equipment.	SE3. The laboratory supports and participates in mechanisms which allow lab equipment to be shared between users in different teams/labs where appropriate.	Evidence of equipment sharing. Evidence of a digital or written system, e.g. an effective central list of shareable equipment, booking system for use of certain equipment.

		NB In some cases this will be achieved
		through central provision of equipment.
Regular maintenance and servicing of large	SE4. There is regular (at least annual)	Interview with lab users and technical staff.
equipment helps the equipment run more efficiently	checking and servicing of large equipment.	Visual inspection.
in terms of energy consumption.		
Many items of equipment, e.g. drying ovens, some	SE5. Energy-intensive equipment is	Interview with lab user(s).
autoclaves, often have a base power consumption	'rightsized' for tasks and used with as high	NB In some cases this will be achieved
which means that their total consumption does not	loadings as possible.	through central provision of equipment.
increase in line with loading. Hence, it can be more		
energy efficient to batch small job/loads, rather than		
running many times at low loadings, or to use smaller		
units more frequently.		

Issue 8: Waste and Recycling (WR)

Principle 1: There are effective mechanisms to achieve reuse/recycling of materials and equipment wherever possible and safe.

Principle 2: Hazardous and special waste is minimised

Why are we asking? (S-Lab Best Practice guide provides resources on what help is available)	Criteria	Evaluation
As well as chemical waste, labs create large amounts of solid waste, including equipment at the end of its useful life, packaging and consumables.	WR1. There are convenient recycling facilities for materials, packaging, and equipment within or nearby the lab and these are used in practice.	Visual inspection, e.g. recycling containers in accordance with organisational policies, no 'flytipping' in corridors or other common areas. Interviews with lab user(s).
If waste which is uncontaminated gets mixed in with other hazardous lab waste, it incurs costly and energy intensive waste treatment (e.g. autoclaving/incineration).	WR2. There is no mixing of contaminated with uncontaminated materials/water etc. so that the latter has to be treated as hazardous or special waste.	Identification of hazardous/special waste streams from the lab and visual inspection and interviews with lab user(s) to verify practices.
Surplus equipment takes up space and creates end of life waste. Using it elsewhere in the university or by	WR3. Measures are in place to minimise	Evidence of activity, e.g. internal alert or

other institutions can avoid these costs.	'hoarding' of unused equipment with no	exchange system, a 'flea market' table,
	clear future application.	regular campaigns.
Much packaging and in some cases containers, can be	WR4. Procurement contracts require	Documentation of contracts.
reused or recycled by suppliers.	collection of empty bottles, packaging etc.	

Issue 9: Water (W)

Principle 1: Water is used efficiently and recirculated wherever possible.

Principle 2: Purified water is used appropriately and sparingly.

Why are we asking? (S-Lab Best Practice guide	Criteria	Evaluation
provides resources on what help is available)		
Labs can consume significant amounts of water, and	W1. In laboratories with considerable water	Evidence of policies and actions, e.g. stickers,
there is potential for wastage through leakage,	use, there is awareness of related cost and	training.
oversight or choice of equipment. Often savings can	environmental issues amongst laboratory	Interviews with lab user(s).
be made at very little additional cost.	users and policies on appropriate practices.	
Once-through cooling can consume significant	W2. Water for cooling is recirculated rather	Visual inspection of relevant equipment such
amounts of water.	than running continuously to waste.	as, condensers, lasers, mass spectrometers.
		Rotary evaporators are used instead of
		aspirators
		Interview with lab user(s).
Water using equipment such as glass washers,	W3. Water-using equipment is 'rightsized'	Visual inspection of relevant equipment.
sterilisers, autoclaves consume significant amounts of water. It is more efficient to make sure that the equipment is full when operated.	for tasks and used with as high loadings as	Interview with lab user(s).
	possible.	NB In some cases this will be achieved
		through central provision of equipment.
Water purification is energy intensive, especially	W4. Purified water is used only when No water stills in use.	
when it is done by distillation.	appropriate, and produced by reverse	Interviews with lab user(s).
	osmosis (RO) wherever possible.	

Issue 10: Innovation and Dissemination (IND)

Principle: Innovative actions for environmental improvement are considered and implemented.

Principle: Information about successful actions is disseminated to the broader laboratory community.

Why are we asking? (S-Lab Best Practice guide provides	Criteria	Evaluation
resources on what help is available)		
The complexity and variety of labs and their users means that	IND1. Innovative action(s) not	Interview with lab user(s).
there will always be opportunities for innovation. This is	recognised in previous criteria	Actions not covered in previous sections, or
especially true at present when concerted actions for improving	which make a real difference to	implemented in unusual ways, which
laboratory environmental performance are relatively new.	the sustainability of the lab. (Up	demonstrate thought and commitment and
Some of the actions identified in this category will be	to two credits).	clearly produce beneficial results.
incorporated into future versions of the workbook.		
There is great potential to disseminate good practice so actions	IND2. Environment-related	Interview with lab user(s).
to achieve this are very desirable.	action(s) which have been	NB This can encompass actions which have
	disseminated beyond the	contributed to other criteria.
	laboratory. f in a tangible way,	
	e.g. written about in a document	
	or a web site. had a significant	
	influence on actions in other	
	laboratories. (Up to two credits).	

Total Points

Category	Max Points	Max Points in	Actual	Improvement Potential and Recommendations
	in Theory	Practice (i.e.	Points	
		excluding		
		N/A)		
Chemicals and Materials	6			
Cold Storage	6			
Fume Cupboards	6			
Heating, Ventilation and Air Conditioning	3			
Lighting	5			
Management and Training	5			
Scientific Equipment	5			
Waste and Recycling	4			
Water	4			
Innovation and Dissemination	4			
Total	48			